Welcome to the
Seminar Course

Advanced Computer Graphics

For homepage - Google on:
” Seminar course advanced computer graphics”

Requirements

 Should have read
> TDA361-Computer Graphics or similar

* The beginners course was theoretically
intensive

e This follow-up course is to enjoy what you have
learned and also learn the advanced techniques

Tutorial

Shadow Al

o

www.cse.chalmers.se/edu/year/2014/course/TDA

CHALMERS

Computer Engineering

Computer Science and Engineering ~ Chalmers Unwersity of Tech:
Seminar Course - DAT205/DIT221
Advanced Computer Graphics 2015
Ip3+4

Examiner: UIf A

uffe@chalmers.se

NEWS:
COURSE TUESDAYS, 15:15 to 17:00, LP 3+4.

, (close to Linsen) Here is a link to Microsoft's free C++
compiler for Windows:

COURSE START:
Tuesday 20/1, 15:15, , 3rd floor, EDIT-building, Johanneberg.

Schedule:
schedule in T
Study period 3, study week 1,2: Tuesdays, 15:15
Study period 3, study week 3: Thursday, 15:15
Study period 3, study week 4,5,6,7: Tuesdays, 15:15
Study period 4: study week 1,2,3: Tuesdays, 15:15
Study period 4: study week 4: Monday, 15:15
Study period 4: study week 5: Possibly cancelled
Study period 4: study week 6: Monday, 15:15
Study period 4: study week 7,8: Tuesdays, 15:15

Very important: Frequently do "refresh”, to avoid watching a cached page, since this web-page is updated during the course.

COURSE-PM

7,5 Hogskolepodng

Grades: U (failed), 3,4, 5

Educational Level: Advanced

Institution: 37 - DATA- OCH INFORMATIONSTEKNIK
Teaching language: English

Teacher and Examiner: Ulf Assarsson, intern phone 1775 (031-7721775)
room 4115, floor 4, the corridor along Rannvégen, ED-huset E-mail: see above.
Course assistants: Viktor Kdmpe, Erik Sintorn

Course Description
The compulsory introductory course TDA361/DIT220 Computer Graphics was highly theoretically intensive, giving a brief introduction to a
vast amount of topics within computer graphlcs In this follow- up course, the students are given a chance to dig deeper into a particular

euhiect in which thev nerform a nraiect Combpuileory ceminare nrecsente more detaile on a recearch-level for a celection of tonice e a ambient

Schedule

Tuesdays 15:15 to 17:00
Check that this works with participants

Study period 3, study week 1,2: Tuesdays, 15:15
Study period 3, study week 3: Thursday, 15:15
Study period 3, study week 4,5,6,7: Tuesdays, 15:15
Study period 4: study week 1,2,3: Tuesdays, 15:15
Study period 4: study week 4: Monday, 15:15

Study period 4: study week 5: Possibly cancelled
Study period 4: study week 6: Monday, 15:15

Study period 4: study week 7,8: Tuesdays, 15:15

14 seminars, ~9 occasions with student presentations, ~25 students => 2-3 students
presenting per seminar.

80% compulsory attendance. l.e., you can max miss 2 seminars.

Tutorial Shadow Algorithms for Real-time Rendering eurographics2010

Seminars
Affects grade (-,0,+)
Sign up in pairs (you can have
individual presentation)
Choose article of your preferred

topic (talk with me). Create 15
minutes presentation

1 week before each seminar,
email article to group.

All students each week: prepare
2 questions per article before
each seminar. Discussions will be
based on these.

1st presenters, Tues.Feb 26th.

eurographics2010

Seminars

e Seminar |-4/5
> Volumetric Shadows

> Free viewpoint Video, Geometry Compression and
GPU Ray tracing of large scenes with shadows,
reflections, ao,

> Shading/Lighting in more detail
> Advanced Path Tracing

° Clustered Shading w. | M lights. Shadows for ~400
lights

Seminars

e Seminar |-4/5
> Volumetric Shadows

> Free viewpoint Video, Geometry Compression and
GPU Ray tracing of large scenes with shadows,
reflections, ao,

> Shading/Lighting in more detail
> Advanced Path Tracing

° Clustered Shading w. | M lights. Shadows for ~400
lights

Seminars

e Seminar |-4/5

> Volumetric Shadows #5482

e
Pl & SR

> Free viewpoint Video, Geometry Compression and
GPU Ray tracing of large scenes with shadows,
reflections, ao,

> Shading/Lighting in more detail
> Advanced Path Tracing

° Clustered Shading w. | M lights. Shadows for ~400
lights

Project (graded)

Do a graphics-related project of your choice, e.g.:

realistic explosions, clouds, fractal mountains (e.g. clip maps/
geomorph/ROAM, ray tracing based a la GPUGems3)

CUDA program (a general parallel problem)

Light propagation volumes

Smaller game

real-time ray tracer

ray tracing with photon mapping.

Ambient occlusion

Spherical Harmonics

Collision Detection

Displacement / parallax mapping / Tesselation shaders

eurographics2010

Tutorial Shadow Algorithms for Real-time Rendering

Project (graded)

Do a graphics-related project of your choice, e.g.:

* realistic explosions, clouds, fractal mountains (e.g. clip maps/geomorph/
ROAM, ray tracing based a la GPUGems3)

Project (graded)

Do a graphics-related project of your choice, e.g.:

* realistic explosions, clouds, fractal mountains (e.g. clip maps/geomorph/
ROAM, ray tracing based a la GPUGems3)

* CUDA program (a general parallel problem)

Hair rendering

Project

Do a graphics-related project of your choice, e.g.:

* realistic explosions, clouds, fractal mountains (e.g. clip maps/geomorph/
ROAM, ray tracing based a la GPUGems3)

» CUDA program (a general parallelgegblem)
* Realistic Skin Rendering O
> Adding realistic hair

Project

Do a graphics-related project of your choice, e.g.:

* real-time ray tracer

* photon mapping.
Path tracer.

Project

Do a graphics-related project of your choice, e.g.:
e Smaller or larger game, in a group or alone

Project

Do a graphics-related project of your choice, e.g.:

e Smaller or larger game
> With screen space ambient occlusion (SSAO)

SSAO OFF SSAOD ON

&

Project

Do a graphics-related project of your choice, e.g.:

e Smaller or larger game
> With screen space ambient occlusion (SSAO)
o Spherical Harmonics — for indirect illumination

! Flexine = [=]1F3
File Scene Meshes Cameras Lights Helpers Shapes Testures Materials Effects Controllers Help

Project

», w e

S R

11

WebGL examples:

. http://inear.se/plasmaball/
. http://www.clicktorelease.com/code/
perlin/explosion.html

> E.g., Prodedural texturing

Project

Do a graphics-related project of your choice, e.g.:
e Model and animate using Maya/3DSMax or Blender

Advanced Computer Graphics

* Home page:

* http://www.cse.chalmers.se/edu/course/
TDA361/Advanced Computer Graphics/

>
SIGGRAPH2012¢(/_4§

)
SIGGRAPH20124(/_4§

= Real-Time Single Scattering in Homogeneous
Participating Media
= Ray-Marching based approaches

= Shadow-Volume based approaches

= Real-Time Multiple Scattering in
Homogeneous Participating Media

(7))

>
IGGRAPH20124(_4 |

= Participating media scatter
light

= “Photons bounce off particles in
the medium”

= Some scattered light reaches
the observer (most doesn’t)

= Thus, we can see the
participating medium

SIGGRAPHQO12»3‘
Single Scattering [Blinn 82]:

= |n scattering

Out scattering ;
> Visible image contribution @ N @
= Qut scattering

> Attenuation

= Absorption
> Attenuation

ng in Participating Media

= Blockers cause airlight
shadows

= Only in scattering along non-shadowed
regions of eye ray for single scattering

ing in Participating Media

= Blockers cause airlight
shadows

= Only in scattering along non-shadowed
regions of eye ray for single scattering

At surface
shading:

- attenuate
the light prop.
to distance to
light source

Scene object

Multiple Scattering:

In reality, photons can bounce
many times before in scattering

In scattering happens also in
shadowed regions.

e

SIGGRAPH2012 V;‘

Multiple scattering Single scattering

Multiple Scattering:

= |n reality, photons can bounce
many times before in scattering

* |n scattering happens also in
shadowed regions.

= Surface shading should consider
not only one light direction but all
incoming non-shadowed
directions

Typically too complex for real-
time.

SIGGRAPH2012 V;‘

At surface
shading:

-> consider
incoming light
for full
hemisphere

@

Scene object

One incoming direction

directions

time.

Typically too complex for real-

Multiple Scattering
Images from Bo Sun et al.

At surface
shading:

-> consider
incoming light
for full
hemisphere

Q-

Scene object

SIGGRAPH2012 V;‘

= Non-homogeneous media

= Smoke and clouds instead of
homogeneous fog

= \With single scattering or with
multiple scattering

= Consider in-scattering only at
parts of light ray inside the

medium [\
44 .

>
SIGGRAPH2012v(_4

®» |f medium has low albedo

= |.e., few small particles such as

= dust, thin fog

= Then, single scattering is the
dominating effect.

> Let us first focus on this simplest
case for real-time purposes:

= single scattering in
homogeneous participating
media.

®» |f medium has low albedo

= |.e., few small particles such as

= dust, thin fog

e

= Then, single scattering is the
dominating effect.

> Let us first focus on this simplest
case for real-time purposes:
= single scattering in 4
homogeneous participating)
media.

= Pseudo code:
= For every pixel in screen space (A)

= Step along the eye ray, using ray
marching

= For each sample position X;

= Check in shadow map (B) if light
source is visible

= |f so, add to pixel’s color:

= in-scattered light contribution
with attenuation

= Done with:

CUDA (Baran et al. 2010)

Loop in fragment shader (e.g.,
Toth and Umenhoffer 2009,
Chen et al. 2011)

Alpha-blended planes (Dobashi
et. al. 2002, Imagire et. al. 2007)

CPU (Kajiya and Von Herzen 1984)

.' it l S|GGRAPH2012»3¢

= Ray-marching: at each point,
determine if lit (shadow map)

Scatt ' S|GGRAPH2012;:Q

= Utilize coherency (Baran et
al. 2010)

= Compute ray incrementally
from previous ray in same
plane as the ray, light and eye

= Only new shadowed
regions can appear (not
new lit regions)

Scatt ' S|GGRAPH2012;30

= On shadow map rendering
= Skew projection such that these Q

epipolar coherent planes become /’—\

rows of the SM (Chen et al. 2011)

Scatt ' S|GGRAPH2012;30

= On shadow map rendering
= Skew projection such that these (!P

epipolar coherent planes become /"_ \

rows of the SM (Chen et al. 2011)

o

.' t ' S|GGRAPH2012;:Q

= On shadow map rendering
= Skew projection such that these Q

epipolar coherent planes become /——\

rows of the SM (Chen et al. 2011)

.' t l S|GGRAPH2012»3¢

= On shadow map rendering

= Skew projection such that these
epipolar coherent planes become

rows of the SM (Chen et al. 2011)

.' t l S|GGRAPH2012»3¢

= On shadow map rendering

= Skew projection such that these
epipolar coherent planes become

rows of the SM (Chen et al. 2011)

Scatt 'l SIGGRAPH2012;3¢

= On shadow map rendering

= Skew projection such that these
epipolar coherent planes become

rows of the SM (Chen et al. 2011)

Scatt l| S|GGRAPH2012»/’Q

= On shadow map rendering

= Skew projection such that these
epipolar coherent planes become

rows of the SM (Chen et al. 2011)

= Raymarching along view ray

becomes traversal along SM row [\
<g-=

.' it l| S|GGRAPH2012»/’Q

= Shadow map is a height field

= For each shadow map row (Chen et al.):

= a 1D min-max mipmap is computed

\4

D

AN

.' it l| S|GGRAPH2012»/’Q

= Shadow map is a height field

= For each shadow map row (Chen et al.):

= a 1D min-max mipmap is computed Min/
X
Min/ Min/

Min/ Min/ Min/ Min/

max max max max
/K/ ; ;

Scatt 'l SIGGRAPH2012;3¢

= Shadow map is a height field

= For each shadow map row (Chen et al.):

= a 1D min-max mipmap is computed

. ll l SIGGRAPH2012 yg

= Shadow map is a height field

= For each shadow map row (Chen et al.):

= a 1D min-max mipmap is computed Min/

. ll l SIGGRAPH2012 yg

= Shadow map is a height field

= For each shadow map row (Chen et al.):
= a 1D min-max mipmap is computed Min/
= Logarithmic search time

= Algorithm O(#pixels * log d)

= d=sqrt(shadow_map_resolution)

= Real-time

"Min/™

Scatt 'l SIGGRAPH2012;3¢

= Wyman 2011:
= CUDA

= Extremely fast

= \/oxelizes shadow casters

s " it l S|GGRAPH2012»3¢

= Wyman 2011:
= CUDA

= Extremely fast
= \/oxelizes shadow casters

= 3D bit grid

- it l S|GGRAPH2012»3¢

= Wyman 2011:
= CUDA

= Extremely fast
= \/oxelizes shadow casters

= 3D bit grid
= For each column
= Binary prefix sum

= Wyman 2011:
= CUDA

= Extremely fast
= \/oxelizes shadow casters

= 3D bit grid
= For each column
= Binary prefix sum
= For each eye ray
= Compute #zeroes (popc)

®m 128 bits at once

.' t ' S|GGRAPH2012;:Q

@

D

Y

s " t l S|GGRAPH2012»3¢

= Wyman 2011:
= CUDA

= Extremely fast

= \/oxelizes shadow casters

= [ess accurate computations [\
= |n-scattering should actually be 4 g

different per voxel

~118 fps. Image from Wyman 2011

~90 fps. Two lights. Image from Billeter
et al. 2010

. . . ' SIGGRAPH2012§/"

= There are of course also Shadow Q
Volume based approaches
= Billeter et al. 2010, Biri et al. 2006, James 2003, Nishita et al. ‘87, Max '86

= Add airlight for
frontfacing shadow
volume polygons

= Subtract for
backfacing ones

’V. IIIV i S|GGRAPH2012»3¢

= Caveat: Q

= Does not work for
intersecting shadow
volumes

= Solution:

= Create shadow volumes
from the shadow map
(Billeter et al. 2010) 4

Contribution subtracted
twice:
=>»Once per overlap

)‘\
4 ‘

SIGGRAPH2012

= Caveat:

= Does not work for AT
intersecting shadow,
volumes

= Solution:

= Create shadow volume
from the shadow map
(Billeter et al. 2010)

Connect shadow map

. . samples with triangles
" Fast if done in vertex and cap with the frustum planes

shader - encloses volume in light

MIGGRAPH 2012 \/"

= Caveat:)

= Does not work for
intersecting shadow
volumes

= Solution:

= Create shadow volumes
from the shadow map |
(Billeter et al. 2010) e o

Correct air-Iig‘ht
= Fast if done in vertex integration
shader

. >
SIGGRAPH20124/
Single Scattering =

Pseudo code (Billeter et al. 2010):

= Render shadow map

= Render scene from camera

= Add light attenuation in the shaders

vec3f color_from_shading = ...

// Compute light attenuation factor

vec3 lightToObj = lightposition[i] - objPos;

float beta = 0.04; // optical thickness

float attenuation = 0.1 *
exp(-beta * length(lightToObj))/ length(lightToObj) "2 *
exp(-beta * length(objPos));

// lightintensity = 1000.0f is a reasonable value

gl_FragData[0].xyz +=_attenuation * lightintensity[i] *
lightcolor[i] * color_from_shading;

. le Scatteri SIGGRAPH2012,/’¢

vec3f color_from_shading = ...
// Compute light attenuation factor

Pseudo code (Billeter et al. 2010); e oo - sghepesivionta - sosees:

float attenuation = 0.1 *

exp(-beta * length(lightToObj))/ length(lightToObj)"2 *
u Render ShadOW map exp(-beta * length(objPos));
// lightintensity = 1000.0f is a reasonable value
gl_FragData[0].xyz += attenuation * lightintensity[i] *

u Render Scene from Camera lightcolor[i] * color_from_shading;

= Add light attenuation in the shaders

= Create the light volume
= Render light-volume mesh to add airlight

<

= additive blending

= Shader computes airlight

= |f polygon backfacing -> negate contribution

SIGGRAPH2012 ,/¢

vec3f color_from_shading = ...
// Compute light attenuation factor

Pseudo Code (Bllleter et al 201 O) vec3 lightToobj = lightposition[i] - objPos;
L] L} float beta = 0.04; // optical thickness
float attenuation = 0.1 *
exp(-beta * length(lightToObj))/ length(lightToObj)"2 *

- Render ShadOW map exp(-beta * length(objPos));

// lightintensity = 1000.0f is a reasonable value
gl_FragData[0].xyz += attenuation * lightintensity[i] *

u Render Scene from Camera lightcolor[i] * color_from_shading;

- . . .
Add Ilght attenuat|0n in the Shaders // Step 4: Computing airlight with shadows.

// Render the shadow volume mesh with depth testing disabled

= (Create the shadow volumes // and additive blending enabled.

// Fragment shader:
el uniform sampler2D camera_z;
- Render the meSh to add alrllght in vec3 objPos, lightPos, viewPos;
. . void main()
= additive blending {
float facing = gl_FrontFacing ? -1.0 : 1.0;
vec3 op = objPos; // mesh’s fragment position

" Shader CompUteS alrllght vec3 myz; // z-value in depth buffer (scene-fragment)
myz = texelFetch2D(camera_z, ivec2(gl_FragCoord.xy),0).rgb;

[|f polygon backfacing > negate con op = (myz.z >= op.z) ? myz : op; // keep z closest to eye

float ai = facing * airlight(viewPos-lightPos, op-lightPos);

)

float airlight(vec3 viewPos, vec3 objPos) CICCRADMHONAD

= \/
) vec3 v=-viewPos; n‘e m"n@ 4

vec3 d = -viewPos + objPos;

float dao = dot(v, normalize(d));
float dbo = length(d) - dao; uniform sampler2D LUT; // airlight lookup table
float dlo = sqrt(dot(v,v) - dao*dao); float map_x(float t)
{
float beta = 0.04; // optical thickness return sign(t)*((log(abs(t))+16.1181)/17.9099)/2+0.5;
float tao = beta * dao; }
float tbo = beta * dbo; float map_y(float t)
float tlo = beta * dlo; {
return (log(abs(t))+16.1181)/17.9099;
vec2 ab = airlight_components(tao, tbo, tlo); }
vec2 airlight_components(float tao, float tbho, float tlo)
float ae = 1, be = 1; {
if(dao > 0 && dbo < 0) float at = texture2D(LUT, vec2(map_x(tao), map_y(tlo))).r;
be = exp(-beta * length(d)); float bt = texture2D(LUT, vec2(map_x(-tbo),map_y(tlo))).r;
else if(dao > 0 && dbo > 0) return vec2(at,bt)
be = exp(-tao); }

else if(dao < 0 & dbo > 0)
ae = be = exp(-tao);
else
ae = be = -1000000;

float abc = sign(tao) * ab.x * ae + sign(tbo) * ab.y * be;
// lightintensity = 1000.0f is a reasonable value. The
// division by tlo is because we premultiply the lookup
// table by tlo to get a better range of precission.

float ret = beta*beta*lightIntensity / (4*PI) * abc / tlo;
return clamp(ret, ®, le7);

hadow-Volume Based Single Scattering

Videos:

Scene: Sponza2

- 5 light sources
- 51272 shadow map
- 100 FPS on average

CIGCRAPHY>012

\ >

= We've got single-
scattering

= real time
= produces quite nice results
= simple algorithms

= What do we have to do to
add multiple scattering?

SIGGRAPH2012 »Z‘

= Simulate light as it passes through the scene
= “Propagation”

= At every point, compute scattering:
= extinction (absorption + out-scattering)
= in-scattering

= We can do this in a 3D grid

P

SIGGRAPH?2012}

= Real-Time Multiple Scattering with Light Propagation
Volumes, (Billeter et al. 2012)

= Extends “Light Propagation Volumes”,

(Kaplanyan and Dachsbacher,

CryEngine3, 2010)

= |ndirect illumination,

one or multiple light bounces

g with LPVs

nght Propagatlon Volumes:

Render scene from light

Inject 3D grid with radiance at
cells containing lit surfaces

= Each cell stores light as SH
= QOccluders represented by SH

Iteratively propagate the light from cell to cell

N

X

Y &

= 1

SIGGRAPH2012 s:‘

= |ight Propagation Volumes:
= Render scene from light

= |nject 3D grid with radiance at

cells containing lit surfaces

= Each cell stores light as SH "ﬂ
* Occluders represented by SH 1 . E\}
= |teratively propagate the light from cell to cell Vi e
) '.&‘|
— AN
=

SIGGRAPH2012 V;‘

= |ight Propagation Volumes:

= Render scene from light

= |nject 3D grid with radiance at
cells containing lit surfaces

= Each cell stores light as SH ‘ Lt nkL
-—L! .

» Occluders represented by SH) S
= |teratively propagate the light from cell to cell v) " -/F-/
= Add multiple Scattering: __’ x N'ﬂ
= |nject radiance from single scattering and propagate. = ‘ =
= |dentified by shadow map W —

= Ray-march grid to visualize multiple scattering)I|

= (Superimpose SV-based single scattering)

SIGGRAPHsz,/’Q

= Each frame: start by

generating an initial radiance
distribution L
. e i
= |nject v
= radiance from single scattering X
A
= jdentified by shadow map o

®» radiance from reflective
shadow maps

= as in original LPV method

SIGGRAPH 2012»&

Propagated Radiance

Source Radiance

}_—y

\63'
e <D T
40\

° rs
Transferefunctlons

Extinction

In-scattering

N

 + Base propagation same as LPV

Source Radiance

co GE] c2
° ° °
c3 c A
° ° °
=3 o <5 ° ° ° Co e C2
o o ° o o o
° ° ° c3 c c;
} _— = > ° ° °
oFo o, ° ° ° G ce <%
% g ° ° °
Extinction

r- @< .
s0% T+

o rs r.
Transfer functions . ° °

° ° °

In-scattering

=
SIGGRAPH2012v(_4§

Propagated Radiance

-] Extinction proportional
Sg;:rc(:zRaii_zance ° ° ° tO base propagatlon

c3 c A
° ° °

3=

=3 =3 c7
° ° °

}

.ro%@ Z.
ree @2 <

5
Transfersfunctions . ° °

In-scattering

>
SIGGRAPH2012v(_4

Propagated Radiance

o o o
Source Radiance ° ° °
co e c3
° ° °
o o o
c3 c ca L
° ° ° e
. — o o o =3 <5 =3
Cs . Ce . c7 . . L 4
° ° ° c3 c A
} _— - > ° ° °
r, v
oFo ° rz, s Ce ©7
% @ Z ° ° °

e @ <@-T-
20~

Transfersfunctions

* In-scattering proportional
to total radiance in cell

s (i)
LPV and Single Scattering LPV-and Multiple Scattering

Multiple Scattering

ore and After

LPV only

LPV extended
with multiple
scattering

Multiple Scattering

/‘-

Single Scattering:
= Chenetal. 2011:
= Textured Lights
= Wyman 2011:
= Fastest o
= Only shadows — not unique in-scattering per ray sment
= Billeter et al. 2010
= No need for ray marching
= Simplest — OpenGL 2.x

Multiple Scattering:
= Billeter et al. 2012

